Characterization of Electronic Charged States of Si-Based Quantum Dots and Their Application to Floating Gate Memories

نویسندگان

  • Seiichi Miyazaki
  • Mitsuhisa Ikeda
  • Katsunori Makihara
چکیده

Nanometer-size Si quantum dots (Si-QDs) with and without Ge core were prepared on thermally-grown SiO2 in a self-assembling manner by controlling the early stages of low pressure chemical vapor deposition (LPCVD). The surface potential changes in individual dots caused by charging or discharging of one electron or a few as were measured by using a Kelvin probe technique in an atomic force microscope (AFM). For Si-QDs larger than 20nm in dot height, surface potential images with a characteristic potential profile with a dimple around the center of the charged dots are observable after electron or hole injection, indicating Coulomb repulsion among the charges retained in the dot. For Si-QDs with a Ge core, electrons are retained stably in Si clad while holes in Ge core, reflecting the energy band discontinuity at the interface between the Si clad and the Ge core. The influence of phosphorous doping to Si-QDs on their electron charging and discharging characteristics was also been studied. Electrical characteristics of metal-oxide-semiconductor (MOS) capacitors and n-channel MOS field-effect-transistors (nMOSFETs) with Si-QDs floating gates confirm multiple-step charging to and discharging from the Si-QDs floating gate at room temperature. From the temporal changes in the drain current with gate voltage switching, it is suggested that the change in the electron distribution in the Si-QDs floating gate play an important role to trigger the transition from a metastable charged state to the next charged state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charging and Discharging Characteristics of Stacked Floating Gates of Silicon Quantum Dots

Implementation of silicon-quantum-dots (Si-QDs) as a floating gate in metal-oxide-semiconductor field-effect transistors (MOSFETs) has received increasing attention because of its potential advantage for multivalued memories operating reliably even at room temperature and above [1-3]. In this work, we focused on electron storage in Si-QDs stack structures and studied electron charging, discharg...

متن کامل

Formation and Characterization of Silicon- Quantum-Dots/Metal-Silicide-Nanodots Hybrid Stack and Its Application to Floating Gate Functional Devices

The use of high density nanodots (NDs) as a floating gate (FG) in Metal-Oxide-Semiconductor (MOS) memories has been attracting much attention because of its potential advantages over conventional planar FG memories. Semiconducting nanodots can show well-discrete charged states due to quantum confinement and Coulomb blockade effect, which leads to multi-valued memory capability [1]. On the other...

متن کامل

Molecular and Quantum Dot Floating Gate Non - Volatile Memories

Conventional Flash memory devices face a scaling issue that will impede memory scaling beyond the 50nm node: a reliability issue involving the tunneling oxide thickness and charge retention. A possible solution is to replace the continuous floating gate, where charge is stored, with a segmented charge storage film, so that leakage through defects in the tunneling oxide would be localized. We fi...

متن کامل

Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata

Application of quantum-dot is a promising technology for implementing digital systems at nano-scale.  Quantum-dot Cellular Automata (QCA) is a system with low power consumption and a potentially high density and regularity. Also, QCA supports the new devices with nanotechnology architecture. This technique works </...

متن کامل

Quantum Dot (QD) gate Si-FETs with Self-Assembled GeOX Cladded Germanium Quantum Dots

This paper presents preliminary data on the transfer and output characteristics of a GeOXcladded Ge quantum dot (QD) gate Si MOSFET. The MOSFET is formed by depositing cladded QDs above the SiO2 gate insulator formed on pSi region, sandwiched between n-type source and drain. Ge (~ 2 to 8 nm) nanoparticles, cladded with GeOX (~1nm) layers, are deposited using site-specific self-assembly. In addi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006